|
Taiwan Academic Institutional Repository >
Browse by Author
|
"hakkani tur d"
Showing items 1-8 of 8 (1 Page(s) Totally) 1 View [10|25|50] records per page
臺大學術典藏 |
2019-07-29T07:49:59Z |
Deriving local relational surface forms from dependency-based entity embeddings for unsupervised spoken language understanding
|
Chen, Y.-N.;Hakkani-Tur, D.;Tur, G.; Chen, Y.-N.; Hakkani-Tur, D.; Tur, G. |
臺大學術典藏 |
2019-07-29T07:49:59Z |
Deriving local relational surface forms from dependency-based entity embeddings for unsupervised spoken language understanding
|
Chen, Y.-N.;Hakkani-Tur, D.;Tur, G.; Chen, Y.-N.; Hakkani-Tur, D.; Tur, G. |
臺大學術典藏 |
2019-07-29T07:49:56Z |
Detecting actionable items in meetings by convolutional deep structured semantic models
|
He, X.;Hakkani-Tur, D.;Chen, Y.-N.; Chen, Y.-N.; Hakkani-Tur, D.; He, X. |
臺大學術典藏 |
2019-07-29T07:49:56Z |
Detecting actionable items in meetings by convolutional deep structured semantic models
|
He, X.;Hakkani-Tur, D.;Chen, Y.-N.; Chen, Y.-N.; Hakkani-Tur, D.; He, X. |
臺大學術典藏 |
2019-07-29T07:49:55Z |
Zero-shot learning of intent embeddings for expansion by convolutional deep structured semantic models
|
He, X.;Hakkani-Tur, D.;Chen, Y.-N.; Chen, Y.-N.; Hakkani-Tur, D.; He, X. |
臺大學術典藏 |
2019-07-29T07:49:55Z |
Zero-shot learning of intent embeddings for expansion by convolutional deep structured semantic models
|
He, X.;Hakkani-Tur, D.;Chen, Y.-N.; Chen, Y.-N.; Hakkani-Tur, D.; He, X. |
臺大學術典藏 |
2019-07-29T07:49:54Z |
End-to-end joint learning of natural language understanding and dialogue manager
|
Deng, L.;Gao, J.;Li, X.;Crook, P.;Hakkani-Tur, D.;Chen, Y.-N.;Yang, X.; Yang, X.; Chen, Y.-N.; Hakkani-Tur, D.; Crook, P.; Li, X.; Gao, J.; Deng, L. |
臺大學術典藏 |
2019-07-29T07:49:54Z |
End-to-end joint learning of natural language understanding and dialogue manager
|
Deng, L.;Gao, J.;Li, X.;Crook, P.;Hakkani-Tur, D.;Chen, Y.-N.;Yang, X.; Yang, X.; Chen, Y.-N.; Hakkani-Tur, D.; Crook, P.; Li, X.; Gao, J.; Deng, L. |
Showing items 1-8 of 8 (1 Page(s) Totally) 1 View [10|25|50] records per page
|