English  |  正體中文  |  简体中文  |  Total items :0  
Visitors :  50558569    Online Users :  1541
Project Commissioned by the Ministry of Education
Project Executed by National Taiwan University Library
 
臺灣學術機構典藏系統 (Taiwan Academic Institutional Repository, TAIR)
About TAIR

Browse By

News

Copyright

Related Links

Jump to: [ Chinese Items ] [ 0-9 ] [ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z ]
or enter the first few letters:   

Showing items 231976-232000 of 2347236  (93890 Page(s) Totally)
<< < 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 > >>
View [10|25|50] records per page

Institution Date Title Author
國立高雄第一科技大學 2009.03 Breast Tumor Classification of Ultrasound Images Using a Reversible Round-Off Nonrecursive 1-D Discrete Periodic Wavelet Transform Lee, Hsieh-Wei;Liu, Bin-Da;Hung, King-Chu;Lei, Sheau-Fang;Tsai, Chin-Fen;Wang, Po Chin;Yang, Tsung-Lung;Lu, Juen-Sean
國立成功大學 2009-03 Breast Tumor Classification of Ultrasound Images Using a Reversible Round-Off Nonrecursive 1-D Discrete Periodic Wavelet Transform Lee, Hsieh-Wei; Liu, Bin-Da; Hung, King-Chu; Lei, Sheau-Fang; Tsai, Chin-Fen; Wang, Po Chin; Yang, Tsung-Lung; Lu, Juen-Sean
國立高雄第一科技大學 2009.02 Breast Tumor Classification of Ultrasound Images Using Wavelet-Based Channel Energy and ImageJ Lee, Hsieh-Wei;Liu, Bin-Da;Hung, King-Chu;Lei, Sheau-Fang;Wang, Po-Chin;Yang, Tsung-Lung
國立成功大學 2009-02 Breast Tumor Classification of Ultrasound Images Using Wavelet-Based Channel Energy and ImageJ Lee, Hsieh-Wei; Liu, Bin-Da; Hung, King-Chu; Lei, Sheau-Fang; Wang, Po-Chin; Yang, Tsung-Lung
臺大學術典藏 2020-03-24T04:02:39Z Breast tumor classification using different features of quantitative ultrasound parametric images Hsu S.-M.;Wen-Hung Kuo;Kuo F.-C.;Liao Y.-Y.; Hsu S.-M.; WEN-HUNG KUO; Kuo F.-C.; Liao Y.-Y.
中山醫學大學 2019-01 Breast tumor classification using different features of quantitative ultrasound parametric images Soa-Min Hsu 1, Wen-Hung Kuo 2, Fang-Chuan Kuo 3, Yin-Yin Liao 4
元智大學 Dec-19 Breast tumor classification using fast convergence recurrent wavelet Elman neural networks Enkh-Amgalan Boldbaatar; Lo-Yi Lin; Chih-Min Lin
國立臺灣大學 2011 Breast Tumor Classification Using Fuzzy Clustering for Breast Elastography 黃俊升; 張瑞峰; HUANG, CHIUN-SHENG; CHANG, RUEY-FENG; HUANG, CHIUN- SHENG
臺大學術典藏 2018-09-10T08:39:17Z Breast Tumor Classification Using Fuzzy Clustering for Breast Elastography RUEY-FENG CHANG; RUEY-FENG CHANG; RUEY-FENG CHANG
臺大學術典藏 2018-09-10T08:49:46Z Breast Tumor Classification Using Fuzzy Clustering for Breast Elastography Moon, W.K. and Chang, S.-C. and Huang, C.-S. and Chang, R.-F.; CHIUN-SHENG HUANG
臺大學術典藏 2020-03-23T07:19:23Z Breast Tumor Classification Using Fuzzy Clustering for Breast Elastography Chang R.-F.; Chang S.-C.; CHIUN-SHENG HUANG; Moon W.K.; Moon W.K.;Chang S.-C.;Chiun-Sheng Huang;Chang R.-F.
元智大學 Aug-16 Breast Tumor Computer-aided Diagnosis using Self-Validating Cerebellar Model Neural Networks Jian-sheng Guan; Guo-li Ji; Lo-Yi Lin; Chih-Min Lin; Tien-Loc Le; Imre J. Rudas
元智大學 Aug-16 Breast Tumor Computer-aided Diagnosis using Self-Validating Cerebellar Model Neural Networks Jian-sheng Guan; Guo-li Ji; Lo-Yi Lin; Chih-Min Lin; Tien-Loc Le; Imre J. Rudas
臺大學術典藏 2019 Breast Tumor Detection and Classification Using Intravoxel Incoherent Motion Hyperspectral Imaging Techniques Chan, S.-W.; Chang, Y.-C.; Huang, P.-W.; Ouyang, Y.-C.; Chang, Y.-T.; Chang, R.-F.; Chai, J.-W.; Chen, C.C.-C.; Chen, H.-M.; Chang, C.-I.; Lin, C.-Y.; RUEY-FENG CHANG; Chan, S.-W.;Chang, Y.-C.;Huang, P.-W.;Ouyang, Y.-C.;Chang, Y.-T.;Chang, R.-F.;Chai, J.-W.;Chen, C.C.-C.;Chen, H.-M.;Chang, C.-I.;Lin, C.-Y.
國立臺灣科技大學 2018 Breast tumor detection in the microwave imaging with oblique projection and Rao detectors Fang, L.-D.;Fang, W.-H.;Yu, L.-H.;Chen, Y.-T.
臺大學術典藏 2020-01-17T07:44:33Z Breast tumor identification in ultrasound images using the normalized cuts with partial grouping constraints HERNG-HUA CHANG;Chu, W.C.;Hung, S.-H.;Chang, H.-H.;Chen, S.-Y.; Chen, S.-Y.; Chang, H.-H.; Hung, S.-H.; Chu, W.C.; HERNG-HUA CHANG
國立臺灣大學 2008 Breast Tumor Kinase Phosphorylates p190RhoGAP to Regulate Rho and Ras and Promote Breast Carcinoma Growth, Migration, and Invasion Shen, Che-Hung; Chen, Hsin-Yi; Lin, Ming-Shien; Li, Fang-Yen; Chang, Cheng-Chi; Kuo, Min-Liang; Settleman, Jeffrey; Chen, Ruey-Hwa
國立臺灣大學 2008 Breast Tumor Kinase Phosphorylates P190rhogap to Regulate Rho and Ras and Promote Breast Carcinoma Growth, Migration, and Invasion 沈哲宏; 陳忻怡; 林明仙; 李芳諺; 張正琪; 郭明良; 陳瑞華; SHEN, CHE-HUNG; CHEN, HSIN-YI; LIN, MING- SHIEN; LI, FANG-YEN; CHANG, CHENG-CHI; KUO, MIN-LIANG; CHEN, RUEY-HWA
國立臺灣大學 2008-10 Breast tumor kinase phosphorylates p190RhoGAP to regulate rho and ras and promote breast carcinoma growth, migration, and invasion. Shen, CH; Chen, HY; Lin, MS; Li, FY; Chang, CC; Kuo, ML; Settleman, J; Chen, RH.
國立臺灣大學 2008 Breast Tumor Microenvironment: Proteomics Highlights the Treatments Targeting Secretome Chen, Shui-Tein; Pan, Tai-Long; Juan, Hsueh-Fen; Chen, Tai-Yuan; Lin, Yih-Shyan; Huang, Chun-Ming
國立臺灣海洋大學 2008 Breast Tumor Microenvironment: Proteomics Highlights the Treatments Targeting Secretome Shui-Tein Chen; Tai-Long Pan; Hsueh-Fen Juan; Tai-Yuan Chen; Yih-Shyan Lin; Chun-Ming Huang
臺大學術典藏 2018-09-10T06:56:50Z Breast tumor microenvironment: proteomics highlights the treatments targeting secretome. Huang, Chun-Ming;Lin, Yih-Shyan;Chen, Tai-Yuan;Juan, Hsueh-Fen;Pan, Tai-Long;Chen, Shui-Tein;HSUEH-FEN JUAN;Huang, Chun-Ming;Lin, Yih-Shyan;Chen, Tai-Yuan;Juan, Hsueh-Fen;Pan, Tai-Long;Chen, Shui-Tein; Chen, Shui-Tein; Pan, Tai-Long; Juan, Hsueh-Fen; Chen, Tai-Yuan; Lin, Yih-Shyan; Huang, Chun-Ming
淡江大學 2009-12 Breast Tumor Registration and Reconstruction for Three-Dimensional Ultrasound Tsai, Yi-Chu;Yang, Chun-Yeh;Chen*, Chii-Jen
東海大學 2013-07-03 Breast tumor segmentation based on level-set method in 3d sonography Lin, Y.-C.; Huang, Y.-L.; Chen, D.-R.
亞洲大學 2007 Breast Ultrasound Computer-Aided Diagnosis Using BI-RADS Features 沈偉誌;Shen, Wei-Chih

Showing items 231976-232000 of 2347236  (93890 Page(s) Totally)
<< < 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 > >>
View [10|25|50] records per page